Quadrupole strengths to be varied
The problem here is to relate quadrupole names to the strength names. We have a provisional function for that.
MQ.12R2.B1:MQ, AT= 490.0647+(143-IP2OFS.B1)*DS, from= IP2;; |
MQ.12R2.B1, K1 := kqf.a23;; |
MQ.12R2.B1, APERTYPE=RECTELLIPSE, APERTURE={0.022, 0.01715, 0.022, 0.022};; |
This allows us to create strength hierarchy trees and see which elements are on common power converters.
MQT.13L2.B1 | KQT13.L2B1 | 1.387 | -0.00119592 | 0.00526778 |
MQ.13L2.B1 | KQF.A12 | 4.785 | 0.0089901 | 0.00955053 |
MQT.12L2.B1 | KQT12.L2B1 | 54.8385 | 0.00315173 | 0.00526778 |
MQ.12L2.B1 | KQD.A12 | 58.2365 | -0.00860096 | 0.00955053 |
MQ.11L2.B1 | KQF.A12 | 111.47296819305907.047169565250538 | 0.0089901 | 0.00955053 |
MQTLI.11L2.B1 | KQTL11.L2B1 | 112.94196819305905.05285535173747 | 0.000150509 | 0.00535343 |
MQML.10L2.B1 | KQ10.L2B1 | 164.76165759074561.216856152542043 | -0.00624671 | 0.00856549 |
MQMC.9L2.B1 | KQ9.L2B1 | 201.45964698843213.304188068614593 | 0.00648015 | 0.00856549 |
MQM.9L2.B1 | KQ9.L2B1 | 205.22564698843217.312231633484352 | 0.00648015 | 0.00856549 |
MQML.8L2.B1 | KQ8.L2B1 | 244.29363638611869.387912154167914 | -0.00418719 | 0.00856549 |
MQM.B7L2.B1 | KQ7.L2B1 | 281.96162578380529.45019000603437 | 0.00680255 | 0.00856549 |
MQM.A7L2.B1 | KQ7.L2B1 | 285.72862578380528.455953752448455 | 0.00680255 | 0.00856549 |
MQML.6L2.B1 | KQ6.L2B1 | 305.40862578380541.484881298854674 | -0.00459638 | 0.0068524 |
MQM.6L2.B1 | KQ6.L2B1 | 309.17562578380540.49020524849064 | -0.00459638 | 0.0068524 |
MQY.B5L2.B1 | KQ5.L2B1 | 377.34662578380568.576740470903474 | 0.00479196 | 0.0068524 |
MQY.A5L2.B1 | KQ5.L2B1 | 381.12762578380597.581070429461306 | 0.00479196 | 0.0068524 |
MQY.B4L2.B1 | KQ4.L2B1 | 407.08562578380639.60968576768771 | -0.00548167 | 0.0068524 |
MQY.A4L2.B1 | KQ4.L2B1 | 410.86662578380668.613700865460974 | -0.00548167 | 0.0068524 |
MQXA.3L2 | KQX.L2 | 499.79162578380726.69878897506704 | 0.0094221 | 0.00877963 |
MQSX.3L2 | KQSX3.L2 | 500.26012578380727.69919588796797 | 0. | 0.0034262 |
MQXB.B2L2 | KQX.L2-KTQX2.L2 | 508.20662578380728.706040322899685 | -0.0094221 | 0.00877963 |
MQXB.A2L2 | KQX.L2-KTQX2.L2 | 514.70662578380734.711559758929837 | -0.0094221 | 0.00877963 |
MQXA.1L2 | KQX.L2+KTQX1.L2 | 523.79162578380726.719158550780783 | 0.0094221 | 0.00877963 |
MQXA.1R2 | KQX.R2+KTQX1.R2 | 576.09162578380801.760491562256007 | -0.0094221 | 0.00877963 |
MQXB.A2R2 | KQX.R2-KTQX2.R2 | 584.30662578380793.766640811049324 | 0.0094221 | 0.00877963 |
MQXB.B2R2 | KQX.R2-KTQX2.R2 | 590.80662578380793.77144535719714 | 0.0094221 | 0.00877963 |
MQSX.3R2 | KQSX3.R2 | 593.47612578380790.773403252947055 | 0. | 0.0034262 |
MQXA.3R2 | KQX.R2 | 600.09162578380790.77821756627408 | -0.0094221 | 0.00877963 |
MQY.A4R2.B1 | KQ4.R2B1 | 686.04662578380885.836353632663755 | 0.0049106 | 0.0068524 |
MQY.B4R2.B1 | KQ4.R2B1 | 689.82762578380914.83874058273248 | 0.0049106 | 0.0068524 |
MQM.A5R2.B1 | KQ5.R2B1 | 715.78562578381013.8547829727555 | -0.0048499 | 0.0068524 |
MQM.B5R2.B1 | KQ5.R2B1 | 719.56662578381042.857071012130362 | -0.0048499 | 0.0068524 |
MQML.6R2.B1 | KQ6.R2B1 | 789.13762578381045.897152750872554 | 0.00431202 | 0.0068524 |
MQM.6R2.B1 | KQ6.R2B1 | 792.90462578381050.899220951520842 | 0.00431202 | 0.0068524 |
MQM.A7R2.B1 | KQ7.R2B1 | 810.67162578381067.90884497259644 | -0.00610131 | 0.00856549 |
MQM.B7R2.B1 | KQ7.R2B1 | 814.43862578381061.91085836244722 | -0.00610131 | 0.00856549 |
MQML.8R2.B1 | KQ8.R2B1 | 853.50863638612475.931207919962603 | 0.00562514 | 0.00856549 |
MQMC.9R2.B1 | KQ9.R2B1 | 890.20464698843887.949489857028247 | -0.00551556 | 0.00856549 |
MQM.9R2.B1 | KQ9.R2B1 | 893.97064698843894.951323259220715 | -0.00551556 | 0.00856549 |
MQML.10R2.B1 | KQ10.R2B1 | 933.03665759075318.96989870685115 | 0.00732671 | 0.00856549 |
MQ.11R2.B1 | KQD.A23 | 983.42736819306731.99274229027694 | -0.00860096 | 0.00955053 |
MQTLI.11R2.B1 | KQTL11.R2B1 | 984.89636819306725.993390535990358 | -0.00106338 | 0.00535343 |
MQT.12R2.B1 | KQT12.R2B1 | 1034.96788409653850.014926873487568 | -0.0029105 | 0.00526778 |
MQ.12R2.B1 | KQF.A23 | 1038.36588409653840.0163504107814 | 0.0089901 | 0.00955053 |
MQT.13R2.B1 | KQT13.R2B1 | 1088.41640000000940.036795077003205 | -0.00266927 | 0.00526778 |
MQ.13R2.B1 | KQD.A23 | 1091.81440000000930.038148817941458 | -0.00860096 | 0.00955053 |
We need to group duplicate strengths and take the one with the smallest K1MAX.
VARY, NAME=KQ10.L2B1, STEP=1.E-9, LOWER=-0.008565494236477409, UPPER=0.008565494236477409; |
VARY, NAME=KQ10.R2B1, STEP=1.E-9, LOWER=-0.008565494236477409, UPPER=0.008565494236477409; |
VARY, NAME=KQ4.R2B1, STEP=1.E-9, LOWER=-0.006852395389181927, UPPER=0.006852395389181927; |
VARY, NAME=KQ5.L2B1, STEP=1.E-9, LOWER=-0.006852395389181927, UPPER=0.006852395389181927; |
VARY, NAME=KQ5.R2B1, STEP=1.E-9, LOWER=-0.006852395389181927, UPPER=0.006852395389181927; |
VARY, NAME=KQ6.L2B1, STEP=1.E-9, LOWER=-0.006852395389181927, UPPER=0.006852395389181927; |
VARY, NAME=KQ6.R2B1, STEP=1.E-9, LOWER=-0.006852395389181927, UPPER=0.006852395389181927; |
VARY, NAME=KQ7.L2B1, STEP=1.E-9, LOWER=-0.008565494236477409, UPPER=0.008565494236477409; |
VARY, NAME=KQ7.R2B1, STEP=1.E-9, LOWER=-0.008565494236477409, UPPER=0.008565494236477409; |
VARY, NAME=KQ8.L2B1, STEP=1.E-9, LOWER=-0.008565494236477409, UPPER=0.008565494236477409; |
VARY, NAME=KQ8.R2B1, STEP=1.E-9, LOWER=-0.008565494236477409, UPPER=0.008565494236477409; |
VARY, NAME=KQ9.L2B1, STEP=1.E-9, LOWER=-0.008565494236477409, UPPER=0.008565494236477409; |
VARY, NAME=KQ9.R2B1, STEP=1.E-9, LOWER=-0.008565494236477409, UPPER=0.008565494236477409; |
VARY, NAME=KQD.A23, STEP=1.E-9, LOWER=-0.00955052607367231, UPPER=0.00955052607367231; |
VARY, NAME=KQT12.R2B1, STEP=1.E-9, LOWER=-0.005267778955433606, UPPER=0.005267778955433606; |
VARY, NAME=KQTL11.L2B1, STEP=1.E-9, LOWER=-0.00535343389779838, UPPER=0.00535343389779838; |
VARY, NAME=KQTL11.R2B1, STEP=1.E-9, LOWER=-0.00535343389779838, UPPER=0.00535343389779838; |
Now repeat all that, modified for Beam2
Created by Wolfram Mathematica 6.0 (30 August 2007) | ![]() |