Measurements in 1995

(two examples)

Single-kick method

Y. Alexahin, CERN-SL-95-110 (AP).

Experimental 108°/90° lattice, 45.6 GeV electron beam.

2 sextupole families only \Longrightarrow poor momentum acceptance (re-cabling not practicable at the time), Increase horizontal single-kick amplitude until about 50% of bunch lost.

Interpretation of measurement can require detailed modelling.

Explain local increase of losses around 4.5 kV (red)?

$$6.6 \text{ kV} \Rightarrow 10^3 \sqrt{A_x / \text{m}} = 2.3 \pm 0.1$$

c.f., prediction
$$10^3 \sqrt{A_x / m} = 2.5$$

Simulation of machine with imperfections , tracking with quantum fluctuations.

 \Rightarrow large 3rd order resonance in x- p_x plane.

At the right kick value 60% of particles are trapped in islands from where they can later be lost

Conclude: compatible with predictions.

Phase-space inflation method

C. Arimatea et al, CERN SL-MD Note 199 (1995)

Low emittance $108^{\circ}/60^{\circ}$ lattice, 65 GeV positron beam. Horizontal emittance increased with emittance wigglers (EW) and, further by changing $f_{\rm RF}$ (J_x). Discrepancies between measured and computed emittance (optical functions at UV telescope? See references for more details).

We use calculated values here.

$$\epsilon_x = \begin{cases} 16 \text{ nm}, & \text{no wigglers} \\ 31 \text{ nm}, & B_{\text{EW}} = 1.024 \text{ T}, \ J_x = 1 \\ 39 \text{ nm}, & B_{\text{EW}} = 1.024 \text{ T}, \ J_x = 0.76 \ \left(\Delta f_{\text{RF}} = 50 \, \text{Hz}\right) \\ 60 \text{ nm}, & B_{\text{EW}} = 1.024 \, \text{T}, \ J_x = 0.52 \ \left(\Delta f_{\text{RF}} = 100 \, \text{Hz}\right) \end{cases}$$

Lifetime reduced at $\varepsilon_x = 60 \text{ nm} \implies 10^3 \sqrt{A_x / \text{m}} = 0.24$,

Computed dynamic aperture $10^3 \sqrt{A_x / m} = 2.0$ would be equivalent to about $8\sigma_x$ of the beam.

e05r46 65GeV MD condition Ex=39mm,Ey=0.5mm

0.8

Sqr[At%] 0.4

0.2

0.5

10°3Sqrt[Ay/m]

Second surface is [10, 10, 7] sigma ellipsoid

Conclude: compatible with predictions.