Single-kick method

Y. Alexahin, CERN-SL-95-110 (AP).

Experimental $108^{\circ} / 90^{\circ}$ lattice, 45.6 GeV electron beam.

2 sextupole families only \Rightarrow poor momentum acceptance (re-cabling not practicable at the time), Increase horizontal single-kick amplitude until about 50% of bunch lost.

c.f., prediction $10^{3} \sqrt{A_{x} / \mathrm{m}}=2.5$

Simulation of machine with imperfections , tracking with quantum fluctuations.
\Rightarrow large 3rd order resonance in $x-p_{x}$ plane. At the right kick value 60% of particles are trapped in islands from where they can later be lost.

Conclude: compatible with predictions.

Phase-space inflation method

C. Arimatea et al, CERN SL-MD Note 199 (1995)

Low emittance $108^{\circ} / 60^{\circ}$ lattice, 65 GeV positron beam.
Horizontal emittance increased with emittance wigglers (EW) and, further by changing $f_{\mathrm{RF}}\left(J_{x}\right)$. Discrepancies between measured and computed emittance (optical functions at UV telescope? See references for more details).
We use calculated values here.
$\{16 \mathrm{~nm}$, no wigglers
$\varepsilon= \begin{cases}31 \mathrm{~nm}, \quad B_{\mathrm{EW}}=1.024 \mathrm{~T}, J_{x}=1\end{cases}$
$= \begin{cases}39 \mathrm{~nm}, & B_{\mathrm{EW}}=1.024 \mathrm{~T}, J_{x}=0.76\left(\Delta f_{\mathrm{RF}}=50 \mathrm{~Hz}\right) \\ 60 \mathrm{~nm}, & B=1.024 \mathrm{~T}, J_{x}=0.52(\Delta f=100 \mathrm{~Hz})\end{cases}$
$60 \mathrm{~nm}, \quad B_{\mathrm{EW}}=1.024 \mathrm{~T}, J_{x}=0.52\left(\Delta f_{\mathrm{RF}}=100 \mathrm{~Hz}\right)$
Lifetime reduced at $\varepsilon_{x}=60 \mathrm{~nm} \Rightarrow 10^{3} \sqrt{A_{x} / \mathrm{m}}=0.24$,

Computed dynamic aperture $10^{3} \sqrt{A_{x} / \mathrm{m}}=2.0$
would be equivalent to about $8 \sigma_{x}$ of the beam.
Conclude: compatible with predictions.

