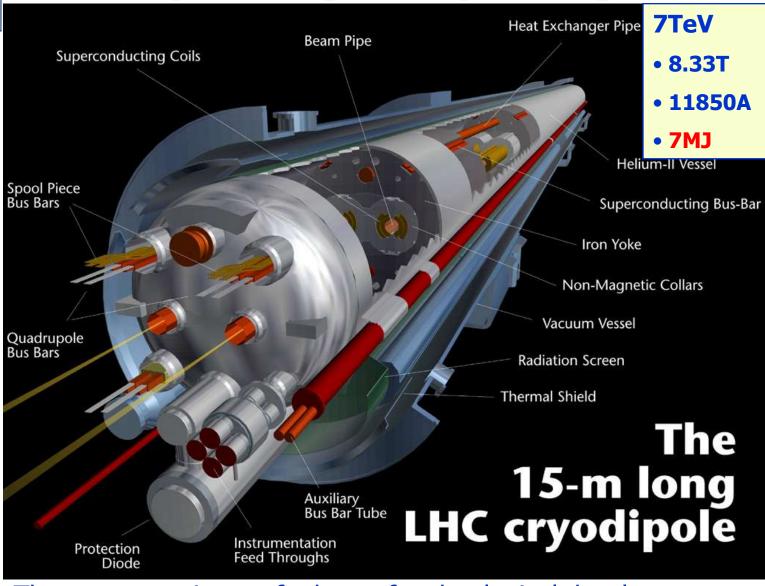
Nucleus-Nucleus Collider

John Jowett CERN

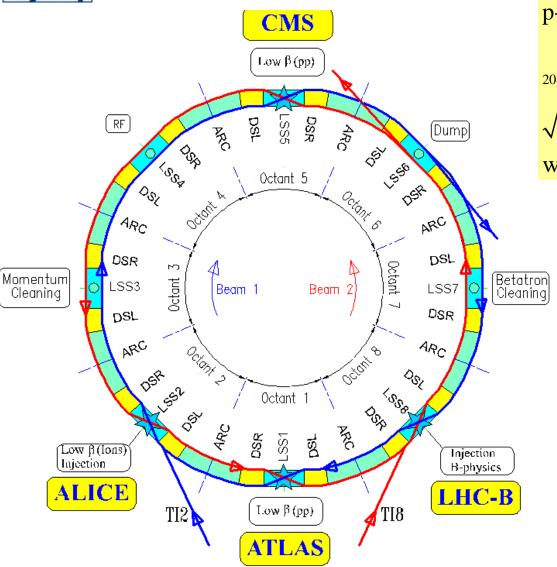
I.M. Jowett, Quark Matter 2008, Jaipur, 7 February 2008

LHC Status Summary

J.M. Jowett, Quark Matter 2008, Jaipur, 7 February 2008


Status of the LHC

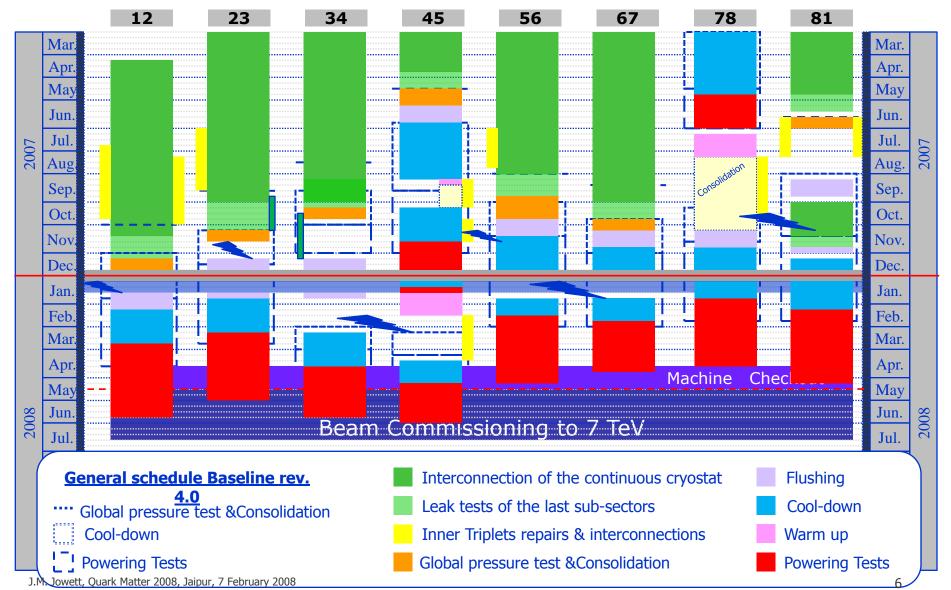
- We are almost at the end of the long road from the first public "Feasibility Study of a Large Hadron Collider in the LEP Tunnel" (1984) to colliding protons and heavy nuclei in the LHC.
- Enormous efforts made in recent years to minimise slippage of the schedule.
- Solutions to engineering setbacks have been found and implemented
 - Main cryogenic line (QRL)
 - Low-beta ("triplet") quadrupoles
 - Plug-in modules for vacuum interconnects
- Installation of the collider's hardware is complete.
 Hardware, then beam, commissioning will soon be fully under way.



The most prominent of a host of technological developments.

Schematic LHC

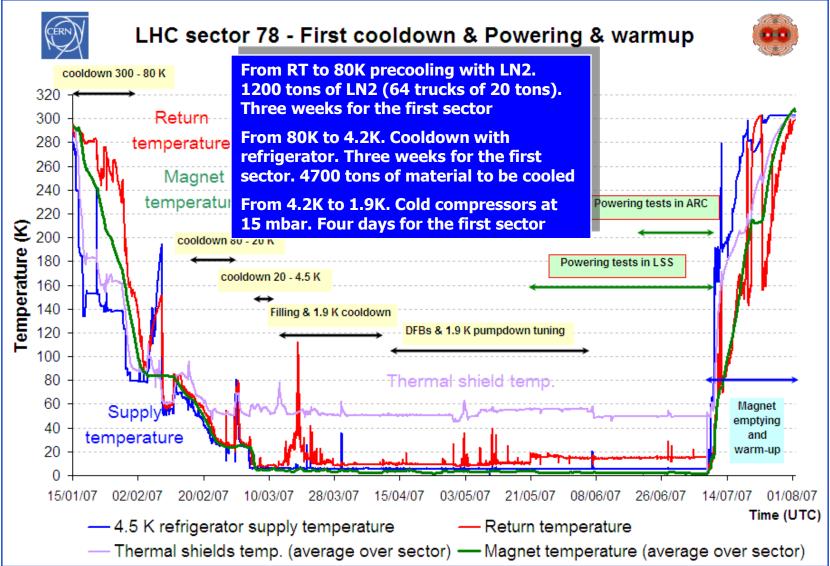
p-p collisions at $\sqrt{s} = 14$ TeV

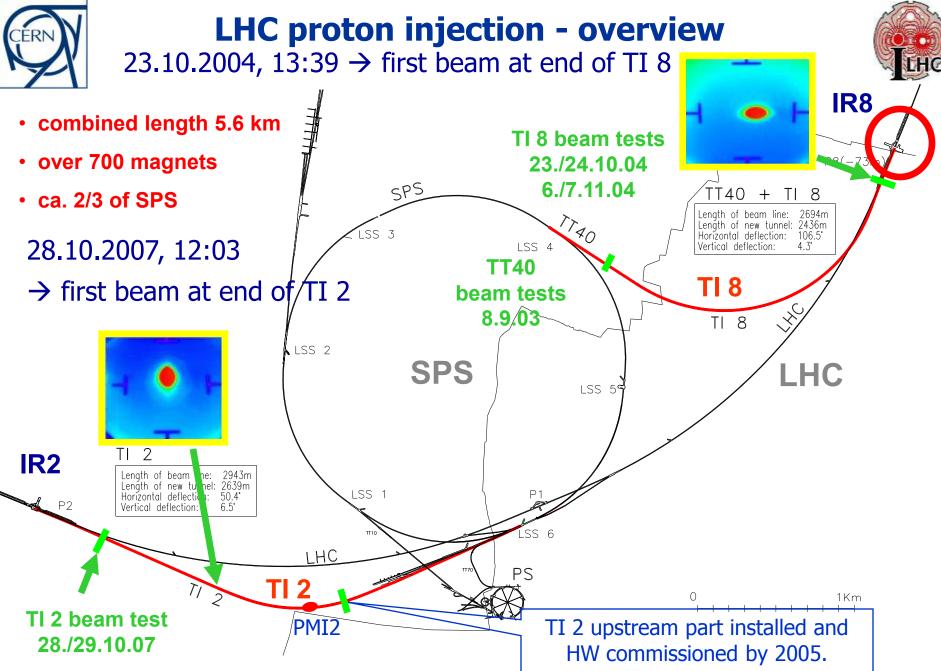

 208 Pb⁸²⁺ - 208 Pb⁸²⁺ collisions at $\sqrt{s} = 1.15$ PeV = 5.5 A TeV with nominal dipole field.

- 4 large experiments
 - ALICE
 - ATLAS
 - CMS
 - LHC-b

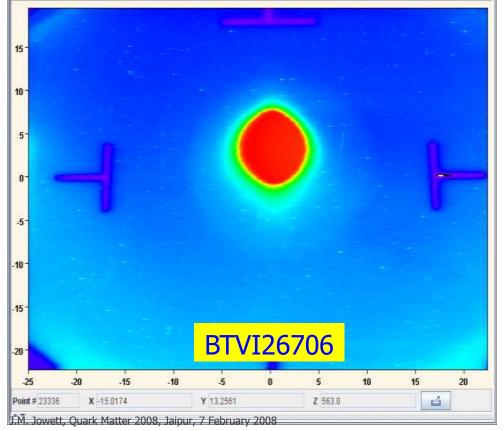
Master Schedule (published 8 Oct 2007)

Current outlook


Expect whole machine to be cold by beginning of June


- 2-3 weeks behind published schedule
- Technically feasible but "success-oriented", i.e., sensitive to any major new problem
- Then start commissioning with proton beams to achieve injection, RF capture, good lifetime on the injection plateau
 - Hard to predict time necessary, should not be rushed ...
 - 75 ns bunch spacing (for LHC-b) asap
- Real luminosity will depend on ability to protect machine
 - must gain experience with collimation, etc.

Commissioning of sector 78 (no triplet)



Proton beam in TI2 at 12:03:47 on 28 Oct 2007

TI2.BTVI.26706 @ Cycle sdds.	12_03_47_493	Update 12:03:47 -
Name	Type and Value	Axis
acqTypeStr	(String[]:5) -> -, -, One extraction, -, -	
amplitudeSet1	(double[]:1) > 132786.67804740992	
amplitudeSet2	(double[]:1) -> 143371.3607305661	
filterSelectStr	(String[]:4) -> Out, First, Second, Third	
imagePositionSet1	(double[][]:385) -> -25.029, -24.9054, -24.781X	
imagePositionSet2	(double[][]:285) -> 17.674799999999998, 17Y	
imageSelection	(short[]:1) > 0	
imageSet	(short[][]:109725) -> 259, 269, 288, 309, 340, Z	
positionSet1	(double[]:1) -> 0.2630388932035786	

Data for Cycle: -

First shot straight down the line.

This BTV screen is the last in the part of TI2 which could be explored with beam on 28 October 2007. It is located some 70 m after the lowest point in TI2, and some 700 m away from the temporary dump, which in turn is placed at some 50 m from the end of the TI2 tunnel, to avoid irradiating the LHC area..

The proton beam for $L = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ is ready.

Commissioning the LHC with proton beams

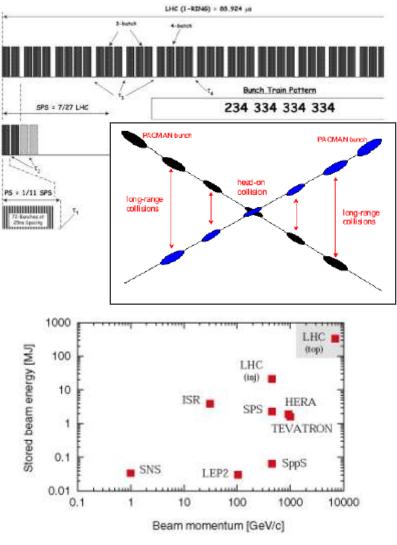
Luminosity

$$L = \frac{N^2 k_b f}{4\pi\sigma_x \sigma_y} F = \frac{N^2 k_b f \gamma}{4\pi\varepsilon_n \beta^*} F(\theta_c)$$

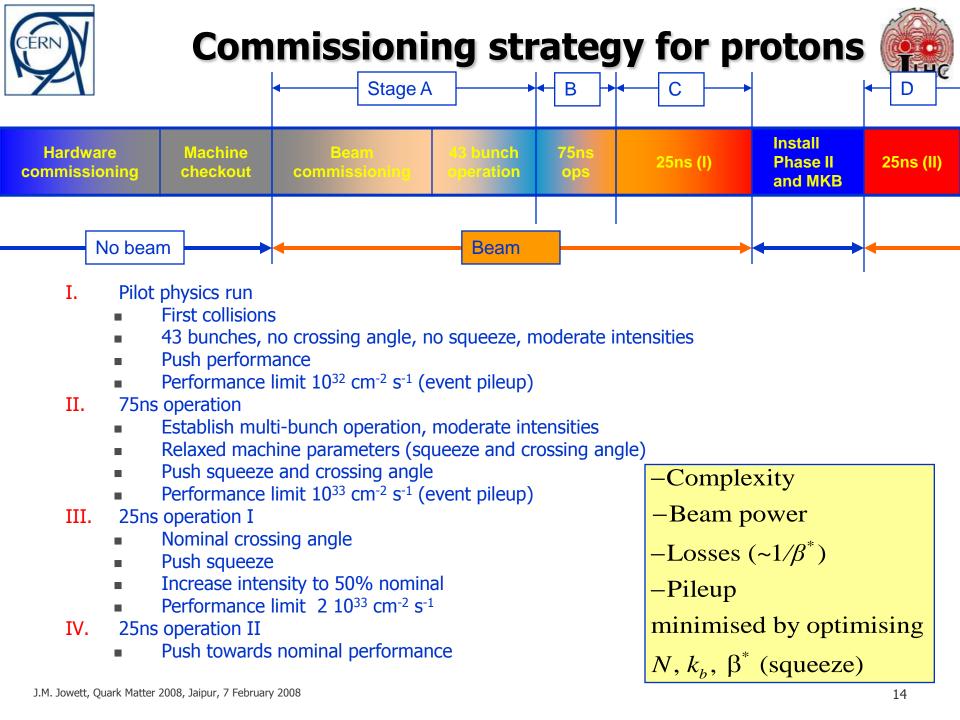
Parameters in luminosity

- Number of particles per bunch
- Number of bunches per beam
- Relativistic factor
- Normalised emittance
- Beta function at the IP
- Crossing angle factor
 - Full crossing angle
 - Bunch length
 - Transverse beam size at the IP

Hour glass factor: $F = 1/\sqrt{1 + \left(\frac{\theta_c \sigma_z}{2\sigma^*}\right)^2}$


N k_b Equal amplitude functions: $\beta_x^* = \beta_y^* = \beta^*,$ En Geometric and normalised emittance: β F $\varepsilon_x^* = \varepsilon_y^* = \varepsilon^* = \frac{\varepsilon_n}{\sqrt{\gamma^2 - 1}}$ $\sigma_z \sigma^*$ \Rightarrow Round beams at IP: $\sigma_x^* = \sigma_y^* = \sigma^* \Box \sqrt{\frac{\beta^* \varepsilon_n}{\alpha}}$ (N.B. LHC uses RMS emittances.)

Nominal p-p luminosity



Nominal settings					
Beam energy (TeV)	7.0				
Number of particles per bunch	1.15 10 ¹¹				
Number of bunches per beam	2808				
Crossing angle (μrad)	285				
Norm transverse emittance (µm rad)	3.75				
Bunch length (cm)	7.55				
Beta function at IP 1, 2, 5, 8 (m)	0.55,10,0.55,10				

Related parameters				
Luminosity in IP 1 & 5 (cm ⁻² s ⁻¹)	10 ³⁴			
Luminosity in IP 2 & 8 (cm ⁻² s ⁻¹)	~5 10 ³²			
Transverse beam size at IP 1 & 5 (μ m)	16.7			
Transverse beam size at IP 2 & 8 (μ m)	70.9			
Stored energy per beam (MJ)	362			

Requires Phase II collimation

Stage A p-p physics run

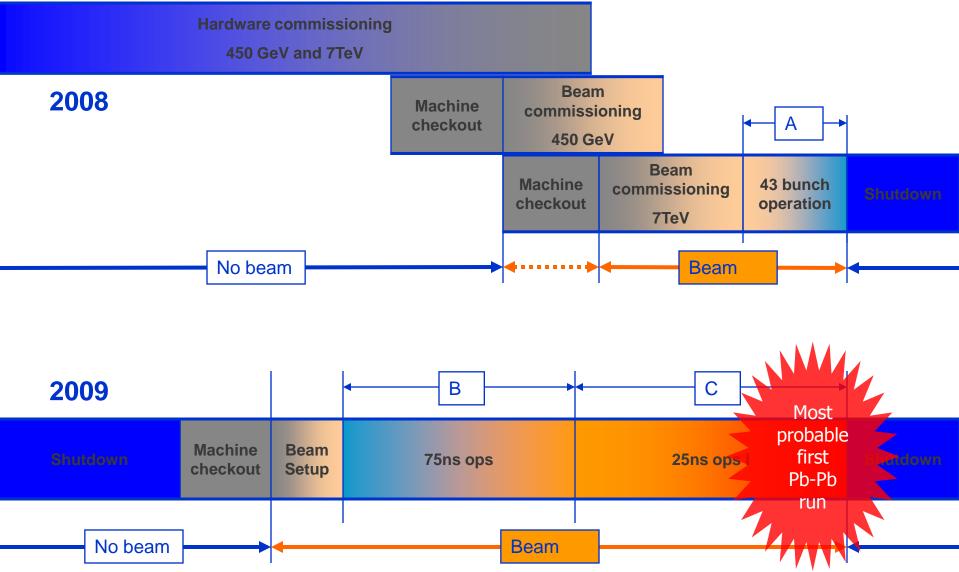
- Start as simple as possible
- Change 1 parameter $(k_b N \beta *_{1,5})$ at a time
- All values for
 - nominal emittance
 - 7TeV
 - 10m β^* in point 2 (luminosity looks fine)

 $L\sigma_{TOT}$ Events/Crossing =

Protons/beam <10¹³

Stored energy/beam <10MJ (c.f. SPS fixed target beam)

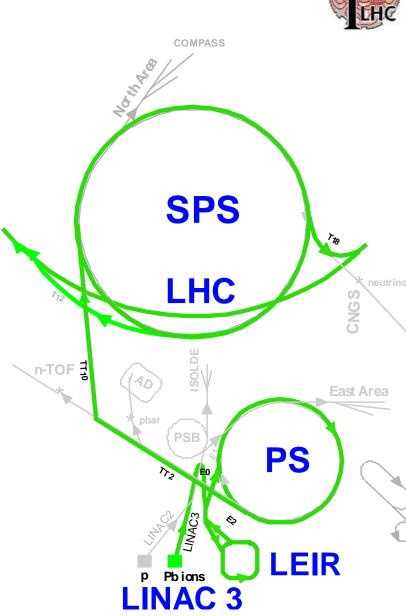
P	Parameters		Beam levels		Rates in ATLAS or CMS		Rates in ALICE	
k _b	N	β * 1,5	I _{beam}	E _{beam}	Luminosity	Events/	Luminosity	Events/
		(m)	proton	(MJ)	(cm ⁻² s ⁻¹)	crossing	(cm ⁻² s ⁻¹)	crossing
1	10 ¹⁰	11	1 10 ¹⁰	10 -2	1.6 10 ²⁷	<< 1	1.8 10 ²⁷	<< 1
43	10 ¹⁰	11	4.3 10 ¹¹	0.5	7.0 10 ²⁸	<< 1	7.7 10 ²⁸	<< 1
43	4 10 ¹⁰	11	1.7 10 ¹²	2	1.1 10 ³⁰	<< 1	1.2 10 ³⁰	0.15
43	4 10 ¹⁰	2	1.7 10 ¹²	2	6.1 10 ³⁰	0.76	1.2 10 ³⁰	0.15
156	4 10 ¹⁰	2	6.2 10 ¹²	7	2.2 10 ³¹	0.76	4.4 10 ³⁰	0.15
156	9 10 ¹⁰	2	1.4 10 ¹³	16	1.1 10 ³²	3.9	2.2 10 ³¹	0.77


All values for nominal emittance, 7 TeV, $\beta^*=10$ m in points 2 and 8

Pa	aramete	rs	Beam	levels	ATLAS	S, CMS	ALICE (LHC-b)	
k _b	N	β* 1,5	I _{beam}	E _{beam}	Luminosity	Events/	Luminosity	Events/
		(m)	proton	(MJ)	(cm ⁻² s ⁻¹)	crossing	(cm ⁻² s ⁻¹)	crossing
43	4 10 ¹⁰	11	1.7 10 ¹²	2	1.1 10 ³⁰	<< 1	1.2 10 ³⁰	0.15
43	4 10 ¹⁰	2	1.7 10 ¹²	2	6.1 10 ³⁰	0.76	1.2 10 ³⁰	0.15
156	4 10 ¹⁰	2	6.2 10 ¹²	7	2.2 10 ³¹	0.76	4.4 10 ³⁰	0.15
156	9 10 ¹⁰	2	1.4 10 ¹³	16	1.1 10 ³²	3.9	2.2 10 ³¹	0.77
936	4 10 ¹⁰	11	3.7 10 ¹³	42	2.4 10 ³¹	<< 1	2.6 10 ³¹	0.15
936	4 10 ¹⁰	2	3.7 10 ¹³	42	1.3 10 ³²	0.73	2.6 10 ³¹	0.15
936	6 10 ¹⁰	2	5.6 10 ¹³	63	2.9 10 ³²	1.6	6.0 10 ³¹	0.34
936	9 10 ¹⁰	1	8.4 10 ¹³	94	1.2 10 ³³	7	1.3 10 ³²	0.76
2808	4 10 ¹⁰	11	1.1 10 ¹⁴	126	7.2 10 ³¹	<< 1	7.9 10 ³¹	0.15
2808	4 10 ¹⁰	2	1.1 10 ¹⁴	126	3.8 10 ³²	0.72	7.9 10 ³¹	0.15
2808	5 10 ¹⁰	1	1.4 10 ¹⁴	157	1.1 10 ³³	2.1	1.2 10 ³²	0.24
2808	5 10 ¹⁰	0.55	1.4 10 ¹⁴	157	1.9 10 ³³	3.6	1.2 10 ³²	0.24

Staged commissioning plan for protons

Ion Injector Chain for LHC


J.M. Jowett, Quark Matter 2008, Jaipur, 7 February 2008

- ECR ion source (2005)
 - Provide highest possible intensity of Pb²⁹⁺
- RFQ + Linac 3
 - Adapt to LEIR injection energy
 - strip to Pb⁵⁴⁺
- LEIR (2005)
 - Accumulate and cool Linac3 beam
 - Prepare bunch structure for PS
- PS (2006)
 - Define LHC bunch structure
 - Strip to Pb⁸²⁺
- SPS (2007)
 - Define filling scheme of LHC

Ion Injector Chain – key facts

- Beam required for LHC is much more demanding than SPS fixed target ion beams
 - Required new electron cooler ring LEIR and many other changes and upgrades (bulk of cost of I-LHC project)
 - Two sets of LHC beam parameters correspond to different modes of operations of injectors
 - "Early beam": 10 times fewer bunches in LHC but same bunch intensity, simplifies injectors but provides useful initial luminosity
 - "Nominal beam": full 592 bunches in LHC, more complicated injector operations
 - See elsewhere for full information

LHC Pb Injector Chain: Key Parameters for luminosity 10²⁷ cm⁻² s⁻¹

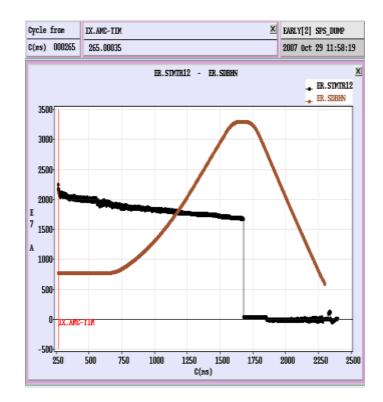
	ECR Source-	→Linac 3	4 LEIR	→ PS <u>13,12,8</u>	SPS 12	LHC
Output energy	2.5 KeV/n	4.2 MeV/n	72.2 MeV/n	5.9 GeV/n	177 GeV/n	2.76 TeV/n
²⁰⁸ Pb charge state	27+	27+ → 54+	54+	54+ → 82+	82+	82+
Output Bp [Tm]		2.28 → 1.14	4.80	86.7 →57.1	1500	23350
bunches/ring		•	2 (1/8 of PS)	$4 (or 4x2)^4$	52,48,32	592
ions/pulse	9 10 ⁹	1.15 10 ⁹ ¹)	9 10 ⁸	4.8 10 ⁸	\leq 4.7 10 ⁹	4.1 10 ¹⁰
ions/LHC bunch	9 10 ⁹	1.15 10 ⁹	2.25 10 ⁸	1.2 10 ⁸	9 10⁷	7 10 ⁷
bunch spacing [ns]				100 (or 95/5) ⁴	100	100
ε*(nor. rms) [μm] ²	~0.10	0.25	0.7	1.0	1.2	1.5
Repetition time [s]	0.2-0.4	0.2-0.4	3.6	3.6	~50	~10'fill/ring
ϵ_{long} per LHC bunch ³			0.025 eVs/n	0.05	0.4	1 eVs/n
total bunch length [ns]			200	3.9	1.65	1

 $^150~e\mu A_e~x~200~\mu s$ Linac3 output after stripping 2 Same physical emittance as protons,

 $\varepsilon^* \equiv \varepsilon_n = \sqrt{\gamma^2 - 1} \varepsilon_{x,y}$ is \Box invariant in ramp.

Stripping foil

Injector Chain Status Summary (1)



Source + Linac3

- Intensity OK for Early Scheme (record = 31 eµA of Pb⁵⁴⁺ out of the linac)
- More stability/reliability required for Nominal Scheme will be supplied by upgrade of source generator to 18 GHz
- Numerous other improvements implemented or coming.

LEIR

- Early beam obtained, reliable
- Reproducible

Injector Chain Status Summary (2)

LEIR for Nominal

 Progress but some concerns about intensity loss

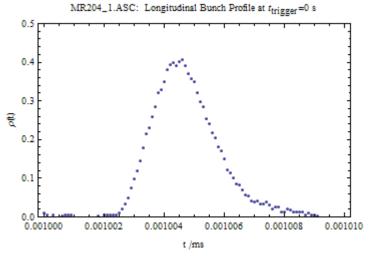
Requires substantial development time in 2009

PS + transfer lines

- Early scheme now OK (much effort)
- No development towards Nominal possible in 2007
- Requires development time in 2009

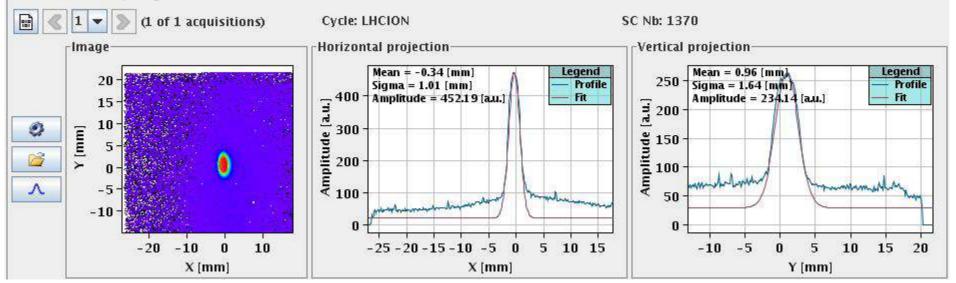
N.B. LHC ion injectors will not be operated in 2008

 Resources all devoted to p-p for LHC


Injector Chain Status Summary (3) SPS

First commissioning of LHC Pb beam late 2007

- Time lost due to mishaps, RF hardware
- Early beam mostly commissioned and extracted
 - See next slide
- Crystal collimation test (H8 beamline) had to be dropped
- Development time required in 2009!


At injection energy, bunch typically loses half intensity in 2 min (real time of movie), c.f. Nominal injection plateau 47 s.

May still improve. Otherwise considering new filling scheme to shorten this plateau (75ns spacing in LHC).

First beam of lead nuclei ejected from SPS towards LHC

- TI2 line set up for protons worked first time (same magnetic rigidity)
- No synchronization of extracted beam (yet)
- (*) Extracted intensity was ~20% of design due to vacuum leak in PS, but 90% design intensity had been accelerated 2 weeks before

Parameter	Design	Achieved	Unit
Ν	3.6	0.7 (*)	10 ⁸ ions
ε _H	6 10 -3	6 10 -3	π .mm.mrad
ε _v	6 10 ⁻³	6 10 ⁻³	π .mm.mrad
ε* _H	1.2	1.2	μm
ε* _V	1.2	1.2	μm

TT60.BTV.610317/Image

Pb-Pb Collisions in the LHC

- The LHC will collide lead nuclei at centre-ofmass energies of 5.5 TeV per colliding nucleon pair.
- This leap to 28 times beyond what is presently accessible will open up a new regime, not only in the experimental study of nuclear matter, but also in the beam physics of hadron colliders.

Nominal vs. Early Ion Beam: Key Parameters

Parameter	Units	Nominal	Early Beam
Energy per nucleon	TeV/n	2.76	2.76
Initial Luminosity L ₀	cm ⁻² s ⁻¹	1 10 ²⁷	5 10 25
No. bunches/bunch harmonic		592/891	62/66
Bunch spacing	ns	99.8	1350
β*	m	0.5 (same as p)	1.0
Number of Pb ions/bunch		7 10 ⁷	7 10 ⁷
Transv. norm. RMS emittance	μm	1.5	1.5
Longitudinal emittance	eV s/charge	2.5	2.5
Luminosity half-life (1,2,3 expts.)	Н	8, 4.5, 3	14, 7.5, 5.5

Nominal scheme parameters

		Injection	Collision
Beam	parameters		
Lead ion energy	[GeV]	36900	574000
Lead ion energy/nucleon	[GeV]	177.4	2759.
Relativistic "gamma" factor		190.5	2963.5
Number of ions per bunch		7. ×	(10^{7})
Number of bunches		5	92
Transverse normalized emittance	$[\mu m]$	1.4 ^{<i>a</i>}	1.5
Peak RF voltage (400 MHz system)	[MV]	8	16
Synchrotron frequency	[Hz]	63.7	23.0
RF bucket half-height		1.04×10^{-3}	$3.56 imes 10^{-4}$
Longitudinal emittance (4σ)	[eV s/charge]	0.7	2.5^{b}
RF bucket filling factor		0.472	0.316
RMS bunch length ^c	[cm]	9.97	7.94
Circulating beam current	[mA]	6.	12
Stored energy per beam	[MJ]	0.245	3.81
Twiss function $\beta_x = \beta_y = \beta^*$ at IP2	[m]	10.0	0.5
RMS beam size at IP2	μ m	280.6	15.9
Geometric luminosity reduction factor F^d		-	1
Peak luminosity at IP2	$[cm^{-2}sec^{-1}]$	-	$1. \times 10^{27}$

Nominal scheme, lifetime parameters

		Injection	Collision				
Interaction data							
Total cross section	[mb]	-	514000				
Beam current lifetime (due to beam-beam) ^{a}	[h]	-	11.2				
Intra Beam	Scattering						
RMS beam size in arc	[mm]	1.19	0.3				
RMS energy spread $\delta E/E_0$	$[10^{-4}]$	3.9	1.10				
RMS bunch length	[cm]	9.97	7.94				
Longitudinal emittance growth time	[hour]	3	7.7				
Horizontal emittance growth time ^b	[hour]	6.5	13				
Synchrotron	Synchrotron Radiation						
Power loss per ion	[W]	3.5×10^{-14}	2.0×10^{-9}				
Power loss per metre in main bends	$[Wm^{-1}]$	8×10^{-8}	0.005				
Synchrotron radiation power per ring	[W]	1.4×10^{-3}	83.9				
Energy loss per ion per turn	[eV]	19.2	1.12×10^6				
Critical photon energy	[eV]	$7.3 imes 10^{-4}$	2.77				
Longitudinal emittance damping time	[hour]	23749	6.3				
Transverse emittance damping time	[hour]	47498	12.6				
Variation of longitudinal damping partition number ^c		230	230				
Initial beam and luminosity lifetimes							
Beam current lifetime (due to residual gas scattering) d	[hour]	?	?				
Beam current lifetime (beam-beam, residual gas)	[hour]	-	< 11.2				
Luminosity lifetime ^e	[hour]	-	< 5.6				

Early scheme Parameters

		Injection	Collision				
Beam parameters							
Number of bunches 62							
Circulating beam current	[mA]		0.641				
Stored energy per beam	[MJ]	0.0248	0.386				
Twiss function $\beta_x = \beta_y = \beta^*$ at IP2	[m]	10.0	1.0				
RMS beam size at IP2 ^e	[µm]	280.6	22.5				
Peak luminosity at IP2	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	$5.4 imes 10^{25}$				
Interaction	on data						
Beam current lifetime (due to beam-beam) ^a	[h]	-	21.8				
Synchrotron	Radiation						
Power loss per metre in main bends	$[Wm^{-1}]$	8.5×10^{-9}	5.0×10^{-4}				
Synchrotron radiation power per ring	[W]	$1.5 imes 10^{-4}$	8.8				
Initial beam and luminosity lifetimes							
Beam current lifetime (beam-beam, residual gas)	[hour]	-	< 21.8				
Luminosity lifetime (as in Table 21.3)	[hour]	-	< 11.2				

Only show parameters that are different from nominal scheme

J.M. Jowett, Quark Matter 2008, Jaipur, 7 February 2008

Nuclear Beam Physics

- Ultraperipheral and hadronic interactions of highly-charged beam nuclei will cause beam losses
 - Bound-free pair production (BFPP) at the IP, direct limit on luminosity
 - Collimation inefficiency, direct limit on beam current
 - Direct luminosity burn-off of beam intensity by BFPP and electromagnetic dissociation (EMD) processes dominates luminosity decay

Pair Production in Heavy Ion Collisions

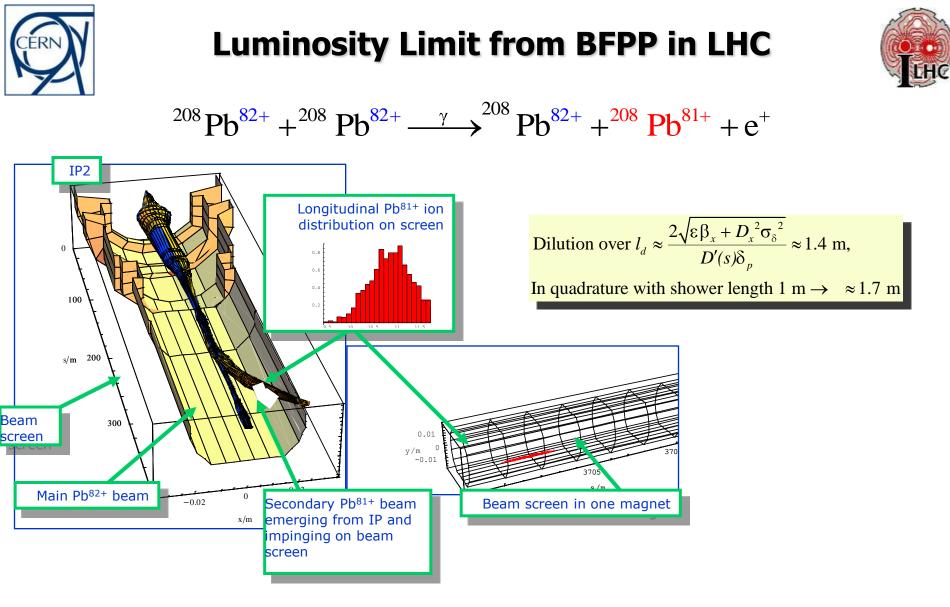
Racah formula (1937) for free pair production in heavy-ion collisions $Z_1 + Z_2 \rightarrow Z_1 + e^- + e^+ + Z_2$

$$\sigma_{\rm PP} = \frac{Z_1^2 Z_2^2 \alpha^2 r_e^2}{\pi} \left[\frac{224}{27} \log 2\gamma_{CM}^3 + \cdots \right] \approx \begin{cases} 1.7 \times 10^4 \,\text{b for Au-Au RHIC} \\ 2. \times 10^4 \,\text{b for Pb-Pb LHC} \end{cases}$$

Cross section for Bound-Free Pair Production (BFPP) (several authors)

$$Z_1 + Z_2 \rightarrow Z_1 + e^- + e^+ + Z_2$$

has very different dependence on ion charges (and energy)

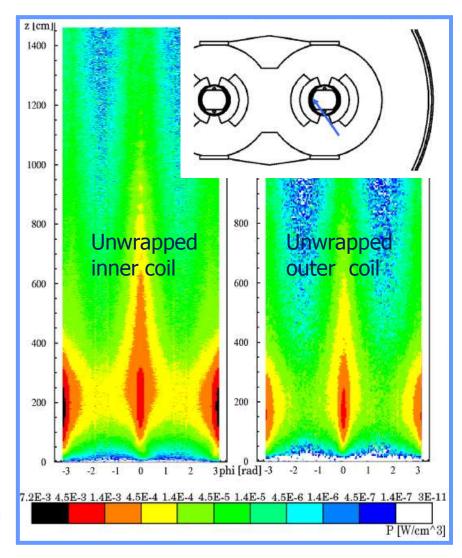

$$\sigma_{PP} \propto Z_1^5 Z_2^2 A \log \gamma_{CM} + B$$

$$\propto Z^7 [A \log \gamma_{CM} + B] \text{ for } Z_1 = Z_2$$

$$\approx \begin{cases} 0.2 \text{ b for Cu-Cu RHIC} \\ 114 \text{ b for Au-Au RHIC} \\ 281 \text{ b for Pb-Pb LHC} \end{cases}$$

We use BFPP values from Meier et al, Phys. Rev. A, **63**, 032713 (2001), includes detailed calculations for Pb-Pb at LHC energy

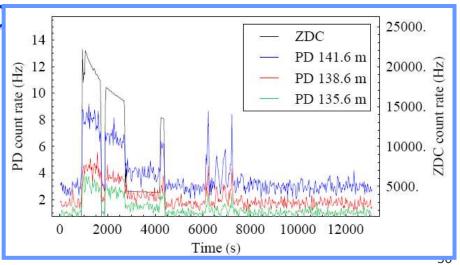
BFPP can limit luminosity in heavy-ion colliders, S. Klein, NIM A 459 (2001) 51


Distinct EMD process (similar rates) does not form spot on beam pipe $^{208}Pb^{82+} + ^{208}Pb^{82+} \xrightarrow{GDR} ^{208}Pb^{82+} + ^{207}Pb^{82+} + n$

Consequences for the LHC

- 281 kHz loss rate at nominal L
- 25 W heating power in dispersion suppressor dipole magnet
- Detailed Monte-Carlo of hadronic shower: heavy-ion interactions with matter in FLUKA
- Revised estimates of quench limit (thermodynamics of liquid He and heat transfer) suggest magnets are not likely to quench due to BFPP beam losses
- However, quench still possible within estimated uncertainties
 - Quench limit, Monte Carlo, BFPP cross section, ...
- Additional beam loss monitors installed around IPs to monitor these losses in LHC operation, can redistribute them to some extent

Test of LHC methodology at RHIC

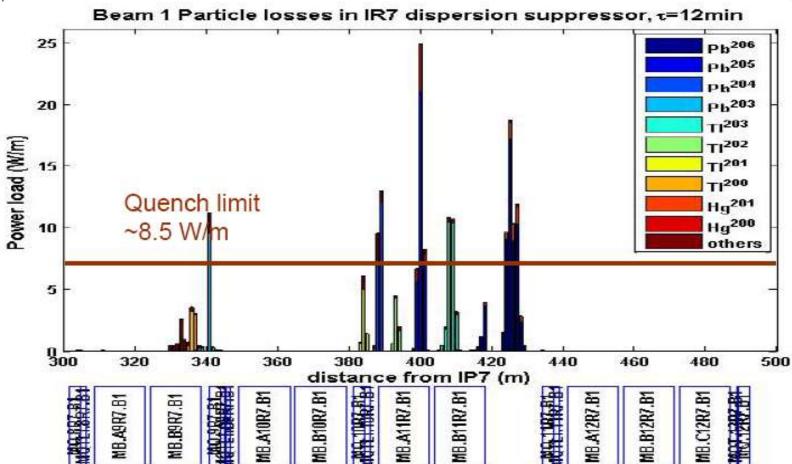

Parasitic measurement during RHIC Cu-Cu run

- Loss monitors setup as for LHC
- Just visible signal!
- Compared predictions and shower calculations as for LHQ
 - Reasonable agreement
- R. Bruce et al, Phys. Rev. Letters 99:144801, 2007
- We still need to benchmark quench limit (in LHC!)

J.M. Jowett, Quark Matter 2008, Jaipur, 7 February 2008

View towards PHENIX

Ion Collimation in LHC



- Collimation system essential to protect machine from particles that would be lost causing magnet quenches or damage
- Principle of collimation for protons:
 - Particles at large amplitudes undergo multiple Coulomb scattering in sufficiently long primary collimator (carbon), deviating their trajectories onto properly placed secondary collimators which absorb them in hadronic showers
- Ions undergo nuclear fragmentation or EMD before scattering enough
 - Machine acts as spectrometer: isotopes lost in other locations, including SC magnets
 - Secondary collimators ineffective

LHC Collimation Example

Loss map after IR7 (betatron cleaning section). Collision optics, standard collimator settings. Special simulation, requires much nuclear physics input, etc. Used to locate additional beam loss monitors for ion runs.

Courtesy G. Bellodi

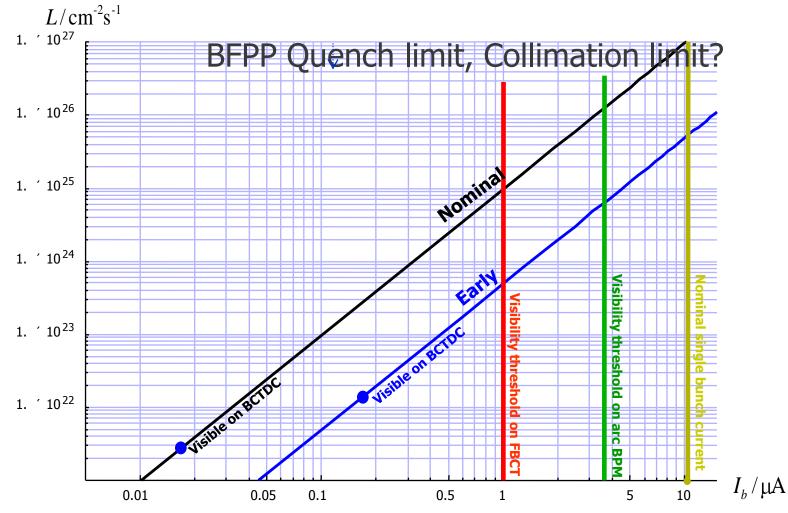
Remarks on Ion Collimation

Probably the major limit for LHC ion luminosity

Nevertheless:

- Conventional (1996) quench limit (tolerable heat deposition in superconducting magnet coils) now appears pessimistic
- This is a soft limit: losses only get to this level if, for some reason, the single-beam (not including collisional) losses reach a level corresponding to a lifetime of 12 min.
- Simulations benchmarked with real beams
 - LHC collimator in SPS (2007) good agreement
 - Earlier data from RHIC consistent
- Phase II Collimation upgrade needed for p-p
 - Looking at what can be included for ions
 - New ideas: crystals, magnetic collimation, optics changes, high-Z primary collimators, ...

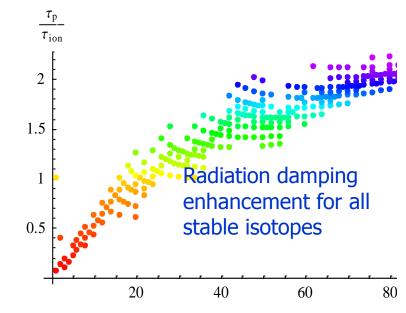
Other limits on performance



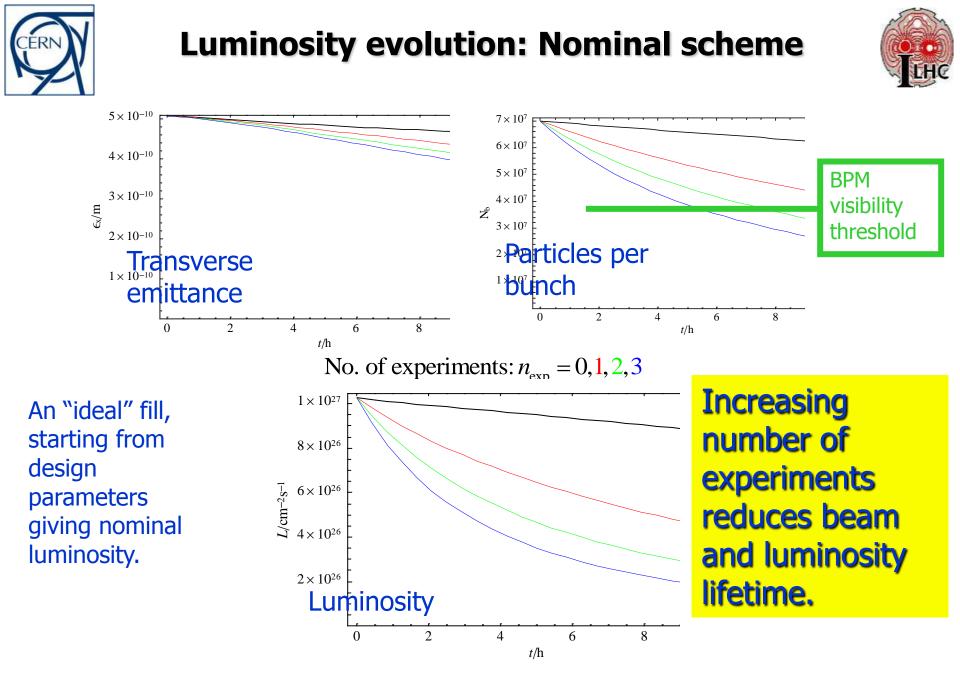
- Total bunch charge is near lower limits of visibility on beam instrumentation, particularly the beam position monitors
 - Must always(!) inject close to nominal bunch current
 - Rely on ionization profile monitors more than with protons
- Intra-beam scattering (IBS, multiple Coulomb scattering within bunches) is significant but less so than at RHIC where it dominates luminosity decay
- Vacuum effects (losses, emittance growth, electron cloud ...) should not be significant

Operational parameter space with lead ions

Thresholds for visibility on BPMs and BCTs.



Synchrotron Radiation

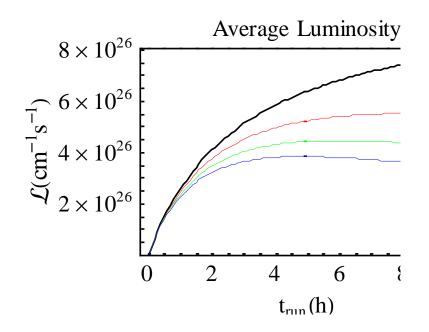


- Nuclear charge radiate coherently at relevant wavelengths (~ nm)
- Scaling with respect to protons in same ring, same magnetic field
 - Radiation damping for
 Pb is twice as fast as for
 protons
 - Many very soft photons
 - Critical energy in visible spectrum
- This is fast enough to overcome IBS at full intensity

$$\begin{split} \frac{U_{\rm ion}}{U_{\rm p}} &\simeq \frac{Z^6}{A^4} \simeq 162, \qquad \qquad \frac{u_{\rm ion}^c}{u_{\rm p}^c} \simeq \frac{Z^3}{A^3} \simeq 0.061, \\ \frac{N_{\rm ion}}{N_{\rm p}} &\simeq \frac{Z^3}{A} \simeq 2651, \qquad \qquad \frac{\tau_{\rm ion}}{\tau_{\rm p}} \simeq \frac{A^4}{Z^5} \simeq 0.5 \end{split}$$

Lead is (almost) best, deuteron is worst.

Example: average luminosity



Average luminosity depends strongly on time taken to dump, recycle, refill, ramp and re-tune machine for collisions.

Average luminosity with 3h turn-around time, in ideal fills starting from nominal initial luminosity.

Maximum of curve gives optimum fill length.

Beams will probably be dumped to maximise average *L* **before** BPM visibility threshold is reached.

No. of experiments: $n_{exp} = 0, 1, 2, 3$

Commissioning Pb-Pb in the LHC Main Rings

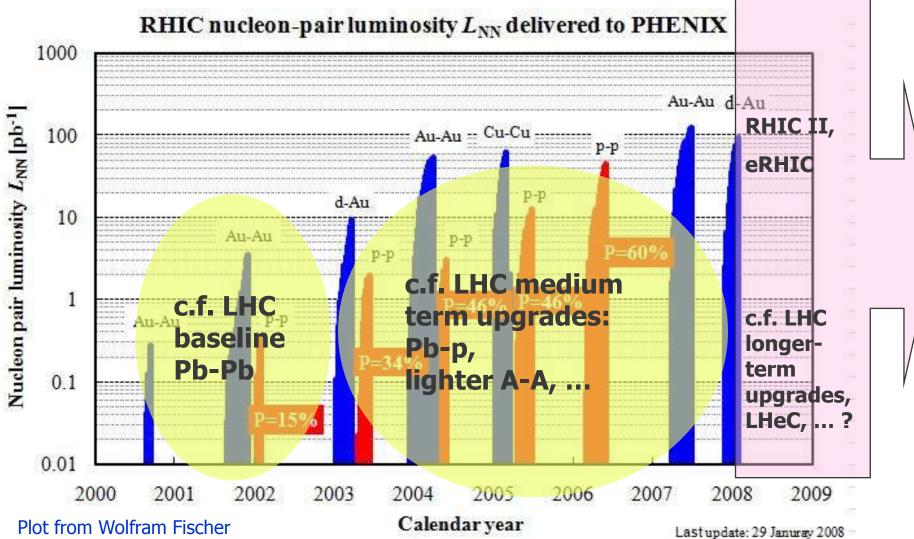
Basic principle: Make the absolute minimum of changes to the working p-p configuration

- Magnetically identical transfer, injection, ramp, squeeze of IP1, IP5
- Same beam sizes
- Different RF frequency swing,
- Add squeeze of IP2 for ALICE
- Requirements
 - LHC works reasonably well with protons
 - Ion injector chain ready with Early Beam (lead time!)
- After Early scheme push up number of bunches towards Nominal
 - always maximising bunch current

How long will it take?

- This will be a hot-switch, done when the LHC is already operational with protons
 - Not a start-up from shutdown
- Previous experience of species-switch:
 - RHIC several times, typically from ions to p-p, with 1 week setup + 1 week performance"ramp-up"
 - More complicated optics changes than LHC (injection is below transition with ions, above with protons)
 - Protons are polarized
 - Done a few times with CERN ISR, late 1970s
 - Went very quickly (< 1 day), because magnetically identical
 - LHC closer to ISR than RHIC from this point of view

Beyond Baseline Pb-Pb Collisions



- Further stages not yet scheduled within CERN programme:
 - p-Pb: preliminary study made (2005)
 - Injectors can do it.
 - Concerns about different revolution frequencies, moving beam-beam encounters, in LHC (2 in 1 magnet) but effects seem weak enough
 - Lighter ions
 - Resources concentrated elsewhere so far.
 - Will take time and detailed scheduling together with other upgrades to LHC.

RHIC programme as a model for LHC?

Summary

The LHC is on track for first proton beams in summer 2008

- Schedule remains sensitive to mishaps
- First Pb-Pb run expected at end 2009
 - very sensitive to time and resources available for ion injectors in 2009
 - "competition" for LHC beam time with p-p
- Pb-Pb luminosity limited by new beam physics
 - Understanding improving, tested
 - Measures taken to monitor and alleviate
 - Number of active experiments
- Programme beyond baseline Pb-Pb to be established and studied

Acknowledgements

This talk sketched some aspects of the work of many people, over many years, in "Ions for LHC" and "LHC" Projects, in CERN and many collaborating institutes around the world.

Particular thanks for slide material to:

R. Bailey, G. Bellodi, H. Braun, R. Bruce, C. Carli, L. Evans, W. Fischer, D. Kuchler, D. Manglunki, S. Maury

Thank you for your attention