

TUPFI024

Influence of the ATS-optics on **Intra-Beam Scattering for HL-LHC**

M. Schaumann^{1,2}, R. Bruce¹, J.M. Jowett¹

¹CERN, Geneva, Switzerland; ²RWTH Aachen, Aachen, Germany

Abstract

In the future High Luminosity (HL-)LHC the influence of intra-beam scattering (IBS) will be stronger than in the present LHC, because of higher bunch intensity N_h , small emittance ϵ_N , and new optics. The new ATS (Achromatic Telescopic Squeeze) optics scheme [1] modifies the lattice in the arcs around the main

interaction points (IP) to provide β^* values as small as 0.15m at the IP but these modifications affect the IBS growth rates. In this paper proton IBS emittance growth rates are calculated with MADX and the Collider Time Evolution (CTE) program [2] for two ATS-optics versions, different settings of the crossing angles and required

corrections and various beam conditions at injection (450 GeV) and collision (7 TeV) energy. CTE simulations of the expected luminosity L, N_b , ϵ_N and bunch length σ_z , evolution during fills are also presented.

Effect of the ATS-Squeeze on IBS Growth Rates

IBS Growth Rates along the Squeeze

Horizontal growth rate (solid line) **increases** with β^* smaller ~0.4m: \rightarrow due to strong dependence on the \mathcal{H} –function. **Longitudinal growth rate** (dashed line) **improves** with smaller β^* :

Increased IBS contribution for

- $\beta^* = 0.1 \text{m}$ in high β -regions.
- Cumulative sum of IBS growth rates (accumulates local growth rates at each element with increasing s) and total growth rate (max value of cumulative sum) are:
 - \rightarrow horizontally increase,
 - \rightarrow longitudinally reduced
 - (dark red lines) by the squeeze.

 \rightarrow dependence on lattice parameters is less dominant.

Table 2: Summary of the IBS growth rates.					
Spacing	25	ns	50	ns	
E [GeV]	450	7000	450	7000	
$\beta^*[m]$	11	0.15	11	0.15	
$lpha_{{ m IBS},l}$ [1/h]	0.096	0.049	0.124	0.062	
$lpha_{{ m IBS},x}$ [1/h]	0.096	0.054	0.103	0.058	
$\alpha_{{\rm IBS},y} \ [10^{-4}/{\rm h}]$	-6.4	-0.015	-6.9	-0.016	

Beam and Luminosity Evolution

Paramete	er	25 ns	50 ns
E	[TeV]	7	7
eta^*	[m]	0.1	0.1
N_b	$[10^{11} \text{ charges}]$	2.2	3.0
$\varepsilon_n = \varepsilon \gamma$	$[\mu m rad]$	2.5	3.0
$arepsilon_l$	[eVs]	2.5	2.5
	Luminosity		

- Simulation Code: Collider Time Evolution (CTE) [2].
- Tracking of 2 bunches of macro-particles in time in a collider.
- Simulation of IBS, radiation damping, but, eg, no beam-beam.
- Based on ATS-V6.503 optics of the flat machine with nominal sequence.
- Single bunch evolution for the 2 cases from Table 1.
- Luminosity does not include levelling or crab-cavities,
 - \rightarrow "virtual" single bunch luminosity.
- 50ns scenario bunches have higher brightness:
 - \rightarrow higher *L* per bunch-crossing, but also faster burn-off, N_b decay and ϵ_N growth.
- N_h losses dominated by burn-off, ●
 - \rightarrow debunching losses from IBS <1%.
- Shrinking σ_z due to strong radiation damping at E = 7TeV.

Michaela.Schaumann@cern.ch

References:

[1] S. Fartoukh, CERN-ATS-2011-161, (2011). [2] R. Bruce et al., Phys. Rev. ST Accel. Beams 13, 091001 (2010).

Acknowledgments:

- Work supported by the Wolfgang-Gentner-Programme of the Bundesministerium für Bildung und Forschung (BMBF).
- Research supported by EU FP7 HiLumi LHC Grant Agreement 284404.

und Forschung

