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1 Introduction
I  present  a  naive  model  which  attempts  to  show how a  large  isolated  resonance  can  lead  to  enhanced  beam
tails and lifetime reduction. This goes some way towards explaining the measurements of "dynamic aperture"
by blowing up the beam on the (108,90) LEP optics in November 1996.  It was originally outlined within my
presentation at the LEP Performance Workshop in January [1].

This model was concocted for illustrative purposes only.  It is by no means intended as a serious theory of the
effects and I am aware that can be criticised on several grounds. It is one-dimensional.  It does not attempt to
describe particle dynamics inside the resonance.  In reality the diffusive effects involve couplings to the other
two modes of oscillation.   The time-dependence and quantum lifetime are treated in the usual, sloppy, quasi-
static way, leading to a distribution function which is not properly normalised.  The true physics can be better
studied by  particle tracking.   However  I think  this  analytical  model  is  useful  as  a  quick route to  qualitative
understanding of how non-gaussian tails can arise and how the beam lifetime can be reduced.

This note contains the details that I did not give in my talk in Chamonix and that I gave only partially in the
writeup.  For the basic physics, I follow the notations and general methods given in [2].

This note is written in the form of a Mathematica 3.0 notebook [3] and is printed with all the "working" visible
(no pencils were used in this production ...).  Notations are a hybrid between  conventional, often ambiguous,
mathematical usage (generated on occasion by the function ) and the more precise forms
imposed by Mathematica.  I use features of the Mathematica  language freely without explanation but I think
this  note  can  still  be  followed  by  someone  who  is  unfamiliar  with  it.   Input  expressions  are  given  in  

 and  are  generally  printed  in  a  box,  together  with  the  results  of  their  evaluation  by  the  Mathematica
kernel. It is worth knowing that square brackets are used to denote the arguments of functions, as in 
while round brackets are reserved to indicate  grouping.  Occasionally I use the alternative "postfix" notation 

 for functions applied as "wrappers" to an expression, e.g., 

0

f
sin

It is better to read this notebook interactively.  It is available from the World-Wide Web page: 



2 Fokker-Planck Equation

2.1 Drift and diffusion terms
In  horizontal  betatron  phase  space,  the  distribution  F Ix  in  the  action  variable  provides  a  reduced
description of  the beam in which  terms involving the  phase have been averaged out.    The evolution  of this
distribution is  governed by the time-dependent Fokker-Planck equation x t F0 Ix rhsFPE, where x  is  the
radiation damping time and the right-hand side is

In the simplest case of linear betatron motion with linear radiation damping and quantum excitation, the drift
and diffusion function are given by:

and the right-hand side of the Fokker-Planck equation is simply

Here the parameter x  is  just a measure of the strength of quantum-excitation, derived from first  principles in
the lectures referred to above.

In this  note, we do not attempt to construct  the drift  and diffusion terms as modified by the resonance.   This
can be done by straightforward application of the methods of [2] in the isolated resonance approximation.

2.2 Form of Equilibrium Solution

2.2.1 A direct approach (that doesn't work ...)

Directly solve the above differential equation for an equilibrium distribution
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2.2.2 Alternative (that does work ...)

The direct approach gives a complicated representation of something which is really fairly simple.  Let's do the
first integral by hand.

Here is the basic solution of the one-dimensional equation with two undetermined constants that are to be use
d to match the boundary conditions.

In traditional notation, this is 

Ix
x c1

Ix
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2 x
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2.3 Properties of basic solutions

2.3.1 Exponential integral

Some derivatives of the exponential integral:
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2.3.2 Two basic solutions

Extract and name the two basic solutions

x,
1
2

x Ei x
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The second solution is excluded in the normal situation where we have to keep the density finite at the origin.
However both vanish at infinity.  To see this, it is not enough to evaluate

Although  Ei x  has  an  essential  singularity  at  x ,  the   function  can  derive  a  useful  asymptotic
expansion around it.

From this we can construct an approximation to :
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The following logarithmic plot of the fractional error shows that the first few terms of the asymptotic series do
indeed provide an excellent approximation to the function:

The asymptotic form confirms that the second function  "vanishes at infinity" (although it is not integrable).

3 Matching Boundary Conditions
We can use the basic solution with two undetermined constants in different ranges of the action in which
the dynamics will be assumed to be linear. Different treatment will be required in regions where the dynamics
is nonlinear.

We can determine the constants and in each region by matching the boundary conditions.
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3.1 Linear Neigbourhood of the Origin
The distribution function must be finite at the origin.  Call its value .  This leads to a rule for determining
one of the constants.

Here is a temporary version of the solution in the linear region close to the origin:

Eliminate the other constant by using a value at the origin:

In  the  case  where  the  linear  region  extends  to  infinity,  we  can  compute  F00  by  normalisation  of  the
distribution:

We know that  is a positive real quantity so let's make the appropriate assumption.

which leads to a rule and a new definition of  :
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The density at the origin is then just

3.2 Resonance-dominated region
Assume there is a region Irmin Ix Irmax   dominated by a single resonance.  The model is based on the crude
approximation  that  the  density  is  constant  in  this  region,  reflecting  the  physical  idea  that  particles  are
transported rapidly from the inner to the outer side of the resonance "island" and back again.  In this  region,
the solution is therefore taken to be:

3.3 Linear region above resonance, Version A
Above the resonance layer, the dynamics is assumed to become linear once again.   Hence the solution will be
of the form given by the rule  with constants to be determined by matching the boundary conditions
at .

Here  is  a  first  version,  in  which  the  distribution  function  is  supposed  continuous  and  its  derivative  is  set,
somewhat arbitrarily, to zero.
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Check that we really satisfied our boundary conditions:

3.4 Linear region above resonance, Version B
Instead of requiring continuity of the derivative of the distribution, we can, instead, arbitrarily reduce the value
of  by the following trick:

Check that we really satisfied our boundary conditions:

This solution goes to zero at infinity:
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3.5 Numerical Example
This  set  of  rules  gives  some  typical  numerical  values,  corresponding  to  a  case  where  the  resonance  is  at  an
amplitude corresponding to about 6  of the beam distribution.

We can define the function globally with appropriate conditionals:

Some numerical values

and a numerical check of the normalisation

Plot the logarithm of the distribution function obtained by solving the Fokker-Planck equation with the above
parameters  and  one  choice  of  boundary  condition.   (Besides  the  computed  distribution  function,  some
additional graphical elements are added here.)    The horizontal scale is x x.
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A similar plot of the diffusive flux shows that it is continuous, as it must be for particle conservation.
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3.6 Normalisation of the distribution
In principle, we can get the value of   by integrating the distribution piecewise.

There is no analytic form for the final  integral and,  besides, it is  logarithmically divergent,  so the calculation
does not yield a useful result.  This is not a serious concern as we should not expect to be able to normalise a
distribution  which  is  slowly  leaking  away.    A  similar  divergence  arises  when  boundary  conditions  are
properly  imposed  in  any  first-passage  time  problem.   The  distribution  just  has  to  be  cut  off  at  some  finite
amplitude.

In the numerical example above, we saw that the normalisation F00 1 x works very well in a typical case.

4 Quantum Lifetime
The outward diffusive flux in the equilibrium distribution is  balanced by the inwared damping flux.  We can
estimate it  as
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Then, according to the usual, somewhat sloppy, argument, its inverse is the quantum lifetime

To  get  the  usual  "Sands"  formula  for  quantum  lifetime,  we  just  have  to  put  the  aperture  limit  in  the  linear
region below the resonance.  In this case the formula reduces to

Ix
x x x

2 Ix

The  lifetime  is  almost  constant  through  the  resonance  layer,  consistent  with  the  basic  physical  idea  of  the
model.

Irmin
x x x

2 Ix

Finally, the expression for the quantum lifetime in the region above the resonance is
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To  show  the  effect  of  the  resonance,  we  can  plot  the  logarithms  of  the  two  lifetimes  as  a  function  of  the
number of "sigmas".  The dashed line shows the "Sands" formula.
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Although I took Version B of the solution for the above examples, the results are very similar with Version A
or  almost  any  other  way  of  matching  the  boundary  conditions.   The  main  exception  is  the  case  where  the
derivative  of  the  distribution  is  made  to  have  the  same  value  above  and  below  the  resonance
F' Irmin F' Irmax .  Then the distribution in coordinate space is gaussian at large amplitudes but with a larger
effective  x  than  in  the  core  region.    In  this  version  of  the  model,  the  lifetime  is  reduced  according  to  a
"Sands" formula with appropriate parameters, i.e., less dramatically than in  the example presented above.

5 Conclusions
Despite its  obvious limitations and its  agnosticism concerning the  dynamics of the resonance itself, a  simple
diffusion  model  indicates  that  enhanced  tails  and  reduced  lifetime  are  generic  features  of  a  distribution
function perturbed by a resonance structure.  This helps in understanding the measurements of usable aperture
by  phase-space  inflation  and  semi-quantitatively  reproduces  the  non-gaussian  tails  of  the  transverse
distribution found in the tail scans [4].
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