
CERN-SL Note / 97-27 (AP)

Collision Schedules
John M. Jowett
18 March 1997

Introduction

Access to this notebookAccess to this notebook

1 Introduction
Consider a circular collider with a set of, in general, irregularly spaced bunches in each beam. Where do these

bunches collide? This is the "collision schedule". The bunches move on the space-time torus formed by the

product of the circumference and the revolution time. This can be represented as a square on a 2D screen or

paper, with opposite edges identified.

Some years ago, I wrote a first version of this Mathematica notebook while studying pretzel schemes with

irregularly spaced bunches in LEP. It was helpful in implementing the module of the WIGWAM program that

finds all the encounters and computes parasitic beam-beam effects at each of them. Following Eberhard Keil’s call

for a labelling or characterisation of the collision schedule at the Forum on Beam-beam Effects in the LHC on

6/3/97, I thought it worth distributing as a contribution to the discussion. It may also be of technical interest as an

application of Mathematica. Of course, alternative approaches to the problem are contained or implicit in

references quoted by others at the Forum.

1.1 Access to this notebook

This notebook is best read interactively. Section 2 defines a function encounters that solves the problem and the

remaining sections give worked examples, including the LHC. A mininal knowledge of Mathematica should be

enough to follow these and apply the function. To understand it in detail and go beyond the examples given will

require more knowledge of Mathematica, including the rudiments of functional programming. Although

developed under Windows, the notebook is available in the formats of Mathematica 3.0 and 2.0 as

/afs/cern.ch/user/j/jowett/public/math/BeamBeam/CollisionSchedule.nb

/afs/cern.ch/user/j/jowett/public/math/BeamBeam/CollisionSchedule.ma

In addition, the generally useful functions defined in the initialisation cells of the notebook have been saved in a

compact "package" file

/afs/cern.ch/user/j/jowett/public/math/BeamBeam/CollisionSchedule.m

If you like, you can just load this package and then treat your own examples, perhaps as part of some "script". The

path /afs/...jowett/group/... leads to the same files.

2 Definition of the function encounters
With length in units of the circumference and time in units of the revolution time, the trajectories of bunches of

each beam starting at azimuth a at time t = 0 are maps of a torus into a circle

sp@a_, t_D := Mod@a + t, 1D;

sm@a_, t_D := Mod@a - t, 1D

The bunches starting at a and b encounter each other at times:

t1@a_, b_D := Mod@Hb - aL�2, 1D;

t2@a_, b_D := Mod@1�2+ Hb - aL�2, 1D

The positions of these encounters are

encounters@a_ �; NumericQ@aD, b_ �; NumericQ@bDD :=
8Mod@Ha + bL�2, 1D, Mod@H1 + a + bL�2, 1D<;

encounters@8a_, b_<D := enc@a, bD;

(The syntax /;NumericQ[a], etc., means that the expression encounters[a,b] will only evaluate for numerical

arguments. The function encounters is "overloaded" to deal with other sorts of arguments in the additional

definitions which follow.)

Beams will be represented as a list of azimuths se@0, 1L representing the positions of the bunches at some time

t = 0. In fact, a beam is really an equivalence class of such lists under the functions sp and sm, parametrised by

the argument t (rotations on the circumference).

The function can be extended to accept beams as arguments and generate the complete "collision schedule" alluded

to by Eberhard Keil as a 3000ü3000 matrix (for the LHC) at the Forum. Here it appears as a matrix of pairs of

collision points. The row and column within the matrix tell you which bunches collide there. Examples will be

shown below.

encounters@beam1_List, beam2_ListD := Outer@encounters, beam1, beam2D

The following extension of the definition returns only the collisions occurring between azimuths s1 and s2. It will

be explained in the section on "Two ring colliders" below.

encounters@beam1_List, beam2_List, 8s1_, s2_<D := Block@8encs, pos<,

encs = encounters@beam1, beam2D;

pos = Position@encs, s_ �; Hs1 <= s && s <= s2LD;

Map@HDrop@#, 83<DL&, MapThread@Append, 8pos, Extract@encs, posD<DD

D

— General::spell1 :

Possible spelling error: new symbol name "encs" is similar to existing symbol "enc".

The function encounters is the complete solution of the collision schedule problem.

(Unfortunately, the function Extract is not available in Mathematica versions prior to 3.0. The package file

CollisionSchedule.m contains a slightly more complicated version of encounters that will work with all

versions.)

CERN-SL Note 97-27, Page 2 CollisionSchedule.nb

3 Basic understanding
Consider a single bunch of one beam starting at a colliding with a single bunch from the other beam starting at b.

Choose a and b at random and look at what happens by evaluating the following compound expression. The

vertical segments in the plots show hwo the square is mapped into a torus.

a = 3�10; b = 7�20;
Print@"Initial positions: ", 8a, b<D;

Plot@8sp@a, tD, sm@b, tD<, 8t, 0, 1<D;

Print@"Times of encounters: ", 8t1@a, bD, t2@a, bD<D;

Print@"Position of each beam at first encounter: " ,

8sp@a, t1@a, bDD, sm@b, t1@a, bDD<D;

Print@"Position of each beam at second encounter: ",

8sp@a, t2@a, bDD, sm@b, t2@a, bDD<D;

Print@"Test encounter position function:" , encounters@a, bDD

Initial positions: 9 3
��������
10

,
7

��������
20

=

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Times of encounters: 9 1
��������
40

,
21
��������
40

=

Position of each beam at first encounter: 9 13
��������
40

,
13
��������
40

=

Position of each beam at second encounter: 9 33
��������
40

,
33
��������
40

=

Test encounter position function:9 13
��������
40

,
33
��������
40

=

CollisionSchedule.nb 12/3/97 CERN-SL Note 97-27 (AP), Page 3

4 Global pictures
For a more global perspective we can look at the geometry of sheets of intersecting trajectories on the space time

torus. Time is vertical, the other axes are the initial positions of the bunches of each beam. This maps a 3-torus

(embedded in a 4D Euclidean space, if you like) into a cube in our 3D space with opposite faces identified.

aa = Plot3D@sp@x, yD, 8x, 0, 1<, 8y, 0, 1<, DisplayFunction-> IdentityD;

bb = Plot3D@sm@x, yD, 8x, 0, 1<, 8y, 0, 1<, DisplayFunction-> IdentityD;

Show@8aa, bb<, DisplayFunction-> $DisplayFunction, BoxRatios-> AutomaticD

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

0

0.25

0.5

0.75

û Graphics3D û

Plot the two collision points on the vertical axis as a function of initial positions in the same way.

CERN-SL Note 97-27, Page 4 CollisionSchedule.nb

aa = Plot3D@First@encounters@x, yDD,

8x, 0, 1<, 8y, 0, 1<, DisplayFunction-> IdentityD;

bb =
Plot3D@Last@encounters@x, yDD, 8x, 0, 1<, 8y, 0, 1<, DisplayFunction-> IdentityD;

Show@8aa, bb<, DisplayFunction-> $DisplayFunction, BoxRatios-> AutomaticD

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

0

0.25

0.5

0.75

û Graphics3D û

5 Examples

5.1 All the encounters between two arbitrary beams

Here is an example for two beams with a random floating-point distribution of a few bunches for illustration (in

reality, of course, the bunch positions should always differ by a multiple of the inverse of the RF harmonic number)

beam1 = Table@Random@D, 85<D

80.377582, 0.557663, 0.774711, 0.649021, 0.941059<

beam2 = Table@Random@D, 83<D

80.338029, 0.518704, 0.327615<

CollisionSchedule.nb 12/3/97 CERN-SL Note 97-27 (AP), Page 5

collisions = encounters@beam1, beam2D;

collisions�� TableForm
0.357805
0.857805

0.448143
0.948143

0.352598
0.852598

0.447846
0.947846

0.538183
0.0381831

0.442639
0.942639

0.55637
0.0563702

0.646708
0.146708

0.551163
0.0511632

0.493525
0.993525

0.583863
0.0838626

0.488318
0.988318

0.639544
0.139544

0.729881
0.229881

0.634337
0.134337

Results are invariant if we shift buckets left in one beam and right in the other by the same amount (equivalent to a

shift in time).

Hencounters@beam1+ .1, beam2- .1D - collisionsL �� Chop

8880, 0<, 80, 0<, 80, 0<<, 880, 0<, 80, 0<, 80, 0<<,
880, 0<, 80, 0<, 80, 0<<, 880, 0<, 80, 0<, 80, 0<<,
880, 0<, 80, 0<, 80, 0<<<

We can always take particular bunches in each beam.

encounters@beam1@@5DD, beam2@@2DD D

80.729881, 0.229881<

Of course, much of the data in the allCollision matrix is redundant in cases of real interest. Let us go on to

illustrate how it can be condensed.

5.2 Two-ring colliders

In a two-ring collider like the tau-charm Factory or LHC, collisions only happen in the range of azimuths where

the two rings come together. Here is one way to treat this, retaining all the information about which bunches are

colliding. Consider a common section between s1 and s2 and define a function that tests whether a collision point

is in it.

hit@s_, s1_, s2_D := If@ s1 < s && s < s2 , s, NullD

Continuing with the example of the previous subsection, we can apply this to the collision object at the appropriate

depth to show where the real collisions are:

CERN-SL Note 97-27, Page 6 CollisionSchedule.nb

hits = Map@Hhit@#, .45, .55DL&, collisions, 83<D;

hits �� TableForm
Null
Null

Null
Null

Null
Null

Null
Null

0.538183
Null

Null
Null

Null
Null

Null
Null

Null
Null

0.493525
Null

Null
Null

0.488318
Null

Null
Null

Null
Null

Null
Null

Collecting the indices gives a list of the bunches which actually collide

hitspos = Position@hits, _RealD

882, 2, 1<, 84, 1, 1<, 84, 3, 1<<

The corresponding collision points are

hitsencs= Extract@hits, hitsposD

80.538183, 0.493525, 0.488318<

(In Mathematica versions before 3.0, the syntax Map[(Part[hits,Apply[Sequence,#]])&,hitspos] will return

the same reult.)

From this we can build an object which contains all the information about which bunches collide and where they

do so:

MapThread@Append, 8hitspos, hitsencs<D

882, 2, 1, 0.538183<, 84, 1, 1, 0.493525<, 84, 3, 1, 0.488318<<

The third element can be discarded, to give a set of collisions identified by

 {<bunch number from beam 1>,< bunch number from beam 2>,< azimuth of collision>}

Map@HDrop@#, 83<DL&, %D

882, 2, 0.538183<, 84, 1, 0.493525<, 84, 3, 0.488318<<

Now we can understand the final part of the definition of encounters. It overloads the previous part of the

definition to incorporate the calculations above in a single function that returns the collisions in a common section

of a ring. This considerably reduces the volume of data in cases like the LHC. We can test it on the present

example:

encounters@beam1, beam2, 8.45, .55<D

882, 2, 0.538183<, 84, 1, 0.493525<, 84, 3, 0.488318<<

CollisionSchedule.nb 12/3/97 CERN-SL Note 97-27 (AP), Page 7

Full LHC-sized examples can be done with sufficient computer memory (see later). Rings with two or more

common sections are easily treated by combining the collisions in each section.

5.3 Bunch trains

Here is a function to make bunch trains: each train consists of nBunches bunches spaced by the parameter spacing

(given in units of the circumference).

fractab@k_D := Table@j�k, 8j, 1, k<D

trains@nTrains_Integer, nBunches_Integer, spacing_D :=
Mod@Table@k�nTrains+ fractab@nBunchesD nBunches spacing, 8k, 1, nTrains<D, 1D

trains@2, 4, 1�21D

99 23
��������
42

,
25
��������
42

,
9

��������
14

,
29
��������
42

=, 9 1
��������
21

,
2

��������
21

,
1
�����
7
,

4
��������
21

==

ListPlot@Sort@Flatten@trains@5, 7, 1�96DDD, Prolog -> AbsolutePointSize@5DD

5 10 15 20 25 30 35

0.2

0.4

0.6

0.8

û Graphics û

As an example we can take bunch trains with an extra "pilot" bunch in the first beam.

beam1 = Join@Sort@Flatten@trains@4, 2, 1�24DDD, 81�48<D

9 1
��������
24

,
1

��������
12

,
7

��������
24

,
1
�����
3
,

13
��������
24

,
7

��������
12

,
19
��������
24

,
5
�����
6
,

1
��������
48

=

beam2 = Sort@Flatten@trains@4, 2, 1�24DDD

9 1
��������
24

,
1

��������
12

,
7

��������
24

,
1
�����
3
,

13
��������
24

,
7

��������
12

,
19
��������
24

,
5
�����
6
=

CERN-SL Note 97-27, Page 8 CollisionSchedule.nb

It’s often convenient to multiply by the harmonic number. Take it to be 96 for illustration.

collisions = 2 96 encounters@ beam1, beam2D;

collisions�� TableForm
8
104

12
108

32
128

36
132

56
152

60
156

80
176

84
180

12
108

16
112

36
132

40
136

60
156

64
160

84
180

88
184

32
128

36
132

56
152

60
156

80
176

84
180

104
8

108
12

36
132

40
136

60
156

64
160

84
180

88
184

108
12

112
16

56
152

60
156

80
176

84
180

104
8

108
12

128
32

132
36

60
156

64
160

84
180

88
184

108
12

112
16

132
36

136
40

80
176

84
180

104
8

108
12

128
32

132
36

152
56

156
60

84
180

88
184

108
12

112
16

132
36

136
40

156
60

160
64

6
102

10
106

30
126

34
130

54
150

58
154

78
174

82
178

List the collision points in order:

Sort@Flatten@collisionsDD

86, 8, 8, 8, 8, 10, 12, 12, 12, 12, 12, 12, 12, 12, 16, 16, 16, 16, 30, 32, 32,
32, 32, 34, 36, 36, 36, 36, 36, 36, 36, 36, 40, 40, 40, 40, 54, 56, 56, 56, 56,
58, 60, 60, 60, 60, 60, 60, 60, 60, 64, 64, 64, 64, 78, 80, 80, 80, 80, 82, 84,
84, 84, 84, 84, 84, 84, 84, 88, 88, 88, 88, 102, 104, 104, 104, 104,
106, 108, 108, 108, 108, 108, 108, 108, 108, 112, 112, 112, 112,
126, 128, 128, 128, 128, 130, 132, 132, 132, 132, 132, 132, 132,
132, 136, 136, 136, 136, 150, 152, 152, 152, 152, 154, 156, 156,
156, 156, 156, 156, 156, 156, 160, 160, 160, 160, 174, 176, 176,
176, 176, 178, 180, 180, 180, 180, 180, 180, 180, 180, 184, 184, 184, 184<

List only the distinct collision points and see how many there are:

distinctCollisions = Union@Sort@Flatten@collisionsDDD

86, 8, 10, 12, 16, 30, 32, 34, 36, 40, 54, 56, 58, 60, 64, 78, 80, 82,
84, 88, 102, 104, 106, 108, 112, 126, 128, 130, 132, 136, 150, 152,
154, 156, 160, 174, 176, 178, 180, 184<

Length@distinctCollisionsD

40

After loading some standard packages, we can look at the frequency distribution of the collisions

<< Statistics‘DataManipulation‘; << Graphics‘Graphics‘

CollisionSchedule.nb 12/3/97 CERN-SL Note 97-27 (AP), Page 9

collisionFrequencies= Frequencies@Sort@Flatten@collisionsDDD

881, 6<, 84, 8<, 81, 10<, 88, 12<, 84, 16<,
81, 30<, 84, 32<, 81, 34<, 88, 36<, 84, 40<, 81, 54<, 84, 56<,
81, 58<, 88, 60<, 84, 64<, 81, 78<, 84, 80<, 81, 82<, 88, 84<,
84, 88<, 81, 102<, 84, 104<, 81, 106<, 88, 108<, 84, 112<, 81, 126<,
84, 128<, 81, 130<, 88, 132<, 84, 136<, 81, 150<, 84, 152<, 81, 154<,
88, 156<, 84, 160<, 81, 174<, 84, 176<, 81, 178<, 88, 180<, 84, 184<<

BarChart@collisionFrequenciesD

68101216303234364054565860647880828488102104106108112126128130132136150152154156160174176178180184

2

4

6

8

û Graphics û

Since we know that if the two beams have identical bunch structure, each collision happens an even number of

times, this plot shows how the pilot bunch generates many new collision points. Without it the frequency

distribution is:

BarChart@Frequencies@Sort@Flatten@2 96 encounters@beam2, beam2DDDDD

8 1216323640566064808488104108112128132136152156160176180184

2

4

6

8

û Graphics û

CERN-SL Note 97-27, Page 10 CollisionSchedule.nb

5.4 Collision schedules for the LHC

The circumference of the LHC and the length of the common section of beam pipe on each side of IP1 are

circLHC= 26658.883 Meter;
lIP1 = 75 Meter;

The RF system for the LHC works on the harmonic

hLHC = 35640;

which factorises as follows

FactorInteger@hLHCD

882, 3<, 83, 4<, 85, 1<, 811, 1<<

The bunch train in the LHC consists of 2835 bunches spaced 10 RF buckets apart (printed here in abbreviated

form):

beamLHC1 = Table@10 k�hLHC, 8k, 0, 2835- 1<D;

Short@beamLHC1 , 2D

90, 1
��������������
3564

,
1

��������������
1782

,
1

��������������
1188

,
1

�����������
891

,
5

��������������
3564

,
1

�����������
594

,
7

��������������
3564

,
2

�����������
891

,
1

�����������
396

,
5

��������������
1782

,

ø2814ù,
2825
��������������
3564

,
157
�����������
198

,
257
�����������
324

,
707
�����������
891

,
943

��������������
1188

,
1415
��������������
1782

,
2831
��������������
3564

,
236
�����������
297

,
2833
��������������
3564

,
1417
��������������
1782

=

The full collision schedule data for the two beams are very large. For weak-strong simulations in particular, it is

more useful to conside one bunch of the opposing beam. As an example, let’s take the last bunch

beamLHC2 = Take@beamLHC1, 8-1<D

9 1417
��������������
1782

=

(Actually, the initial conditions for the two beams should be shifted by an amount depending on their injection

phases. I have not done this here.)

Here are all the encounters that bunch 1 of beam2 has with bunches of beam 1 in the straight section on the right of

(and including) IP1:

CollisionSchedule.nb 12/3/97 CERN-SL Note 97-27 (AP), Page 11

collIP1R= encounters@beamLHC1, beamLHC2, 80, lIP1�circLHC<D

98731, 1, 0<, 9732, 1,
1

��������������
7128

=, 9733, 1,
1

��������������
3564

=,

9734, 1,
1

��������������
2376

=, 9735, 1,
1

��������������
1782

=, 9736, 1,
5

��������������
7128

=, 9737, 1,
1

��������������
1188

=,

9738, 1,
7

��������������
7128

=, 9739, 1,
1

�����������
891

=, 9740, 1,
1

�����������
792

=, 9741, 1,
5

��������������
3564

=,

9742, 1,
1

�����������
648

=, 9743, 1,
1

�����������
594

=, 9744, 1,
13

��������������
7128

=, 9745, 1,
7

��������������
3564

=,

9746, 1,
5

��������������
2376

=, 9747, 1,
2

�����������
891

=, 9748, 1,
17

��������������
7128

=, 9749, 1,
1

�����������
396

=,

9750, 1,
19

��������������
7128

=, 9751, 1,
5

��������������
1782

==

This may be more useful converted to distances from the IP, suppressing the bunch number from beam 2,

collIP1R= collIP1R�. 8xx_, yy_, zz_< -> 8xx, zz circLHC<

88731, 0<, 8732, 3.74002 Meter<, 8733, 7.48005 Meter<, 8734, 11.2201 Meter<,
8735, 14.9601 Meter<, 8736, 18.7001 Meter<, 8737, 22.4401 Meter<,
8738, 26.1802 Meter<, 8739, 29.9202 Meter<, 8740, 33.6602 Meter<,
8741, 37.4002 Meter<, 8742, 41.1403 Meter<, 8743, 44.8803 Meter<,
8744, 48.6203 Meter<, 8745, 52.3603 Meter<, 8746, 56.1003 Meter<,
8747, 59.8404 Meter<, 8748, 63.5804 Meter<, 8749, 67.3204 Meter<,
8750, 71.0604 Meter<, 8751, 74.8005 Meter<<

Thus the bunch under consideration in beam 2 meets bunch number 731 of beam 1 at IP1; it then meets bunch

number 732 at 3.74 m to the right of IP1 and so on.

On the left of IP1, the bunch has the encounters

collIP1L= encounters@beamLHC1, beamLHC2, 81 - lIP1�circLHC, 1<D

�. 8xx_, yy_, zz_< -> 8xx, zz circLHC<

88711, 26584.1 Meter<, 8712, 26587.8 Meter<, 8713, 26591.6 Meter<,
8714, 26595.3 Meter<, 8715, 26599. Meter<, 8716, 26602.8 Meter<,
8717, 26606.5 Meter<, 8718, 26610.3 Meter<, 8719, 26614. Meter<,
8720, 26617.7 Meter<, 8721, 26621.5 Meter<, 8722, 26625.2 Meter<,
8723, 26629. Meter<, 8724, 26632.7 Meter<, 8725, 26636.4 Meter<,
8726, 26640.2 Meter<, 8727, 26643.9 Meter<, 8728, 26647.7 Meter<,
8729, 26651.4 Meter<, 8730, 26655.1 Meter<<

5.5 Input for MAD

Let us sketch how to generate a MAD description of the beam-beam collisions in the LHC, continuing with the

example of the previous section. One must define appropriate beambeam elements and then generate sequence

editor commands to install them.

Directory@D

C:\MATH\BeamBeam

Define a function that generates MAD commands on two separate files since they need to be executed separately

by MAD.

CERN-SL Note 97-27, Page 12 CollisionSchedule.nb

MADinstall@filed_, filei_, 8bunch_, s_<D := Block@8<,

element = "bb"<>ToString@bunchD;

WriteString@filed, element<>":", "BEAMBEAM \n"D;

WriteString@filei, "Install,element= ", element, ", at=", s�Meter, "\n"DD

To install all these elements, we can map this function over the complete list of encounter points on both sides of

the IPs.

bbdefs = OpenWrite@"bbdefs.mad"D;

bbinstall = OpenWrite@"bbinstall.mad"D;

Map@ HMADinstall@bbdefs, bbinstall, #DL&, Join@collIP1L, collIP1RDD;

Close@bbdefsD; Close@bbinstallD

bbinstall.mad

The contents of the two MAD scripts are

! ! bbdefs.mad

bb711:BEAMBEAM
bb712:BEAMBEAM

<<< many lines not shown >>>

bb751:BEAMBEAM

! ! bbinstall.mad

Install,element= bb711, at=26584.1
Install,element= bb712, at=26587.8

<<< many lines not shown >>>

Install,element= bb751, at=74.8005

However the beam-beam element should include the separation of the beams, given by the local orbit, and the

dependence of the opposing beam size on the local optical functions. This is done in WIGWAM by propagating

the values from the nearest end of an element and computing the variation of the size of the beam accordingly.

One way of doing this in MAD is to use the above files in a first step to dump out an OPTICS table at the

BEAMBEAM elements. In a second step, the table can be read into Mathematica and used (with an extended

version of the function MADinstall) to construct a new version of the file bbdefs.mad where each beam-beam

element has the appropriate parameters added to it. The details are straightforward and are not given here.

6 Conclusions
The problem of collision schedules in one- or two-ring colliders can be solved with a single function defined in a

few lines of Mathematica code. The potentially large volume of data describing the encounters between bunches

in a machine like the LHC can be reduced considerably. It is then easy to generate a description of the collision

schedule in the MAD input language.

CollisionSchedule.nb 12/3/97 CERN-SL Note 97-27 (AP), Page 13

